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Abstnct-The paperdeals with elastic-perfectly plaslic solids which shake down to apurely elastic stale under
lhe aclion of quasi-static loads which vary arbitrarily remaining within a given domain. It presents a technique
for bounding the dissipation energy which is done locally al.a given point of the body during the adaptation
process. This technique leads to a problem of finile plasticity which may be considered as the holonomic
version of the original shakedown problem suitably perturbed. The holonomic solution can be directly used 10
construct the local bound which proves to be also the most slringent one. A simple example illustrates the
method.

I. INTROOUCTION

The bounding techniques playa crucial role in the assessment of structural safety within the
framework of shakedown theory. Among the post-shakedown deformation parameters to be
bounded, plastic dissipation energy is an important one. The bounding theorems for dissipation
energy formulated so far (see, e.g. [1-5)) consider the dissipation energy of the overall
structure, while the interest is in a bounding theorem for the energy dissipated locally at any
point of the structure. In certain narrower circumstances, the known bounds on the so-called
"plastic strain intensities" (or on functions of them) can be considered as local bounds on
dissipation energy associated with specific deformation modes (see, e.g. [6-8)). However, to the
author's knowledge, a true local bound on plastic dissipation energy has not been formulated so far.

The present paper, following a perturbation method adopted by the same author
elsewhere [9-11l, furnishes a bounding technique for the local plastic dissipation which is
produced during the application of external actions (repeated loads and temperature cycles).
Dynamic effects as well as workhardening are considered as negligible and displacements are
treated as infinitesimal.

By the use of an argument which is similar but not identical to that used by Koiter in his
famous article on plasticity[ll, we obtain a bound expression which, being dependent on some
free parameters, may be optimized. This leads us to formulate a constrained minimization
problem, whose optimality conditions describe a boundary value problem of finite plasticity,
which appears as the holonomic version of the original shakedown problem suitably perturbed.
The holonomic solution permits the bound to be the most stringent and expressed in local terms,
in the sense that the bounding quantity is referred to the same body portion which the dissipa
tion energy is referred to.

The usual conventions of tensor calculus are adopted, such as the summation convention for
repeated indices. Commas indicate derivatives with respect to coordinates, i.e. (.. ')'i =
a(. . .)/aXi' while the time derivative is indicated by a superimposed dot.

2. THE SHAKEDOWN PROBLEM

An elastic-perfectly plastic solid of volume V is referred to a rectangular cartesian
coordinate system, say x =(XIt X2 X3). Its surface 5 is restrained on the part ~, where the
displacements "I = 11; are prescribed; while on the complementary part 51 =5 - ~ the tractions
li, (; =1,2,3), are applied. Body forces ~, as well as imposed strains IIj (for instance of
thermal origin) are supposed to be present.

tThe results presented in this paper were obtained in the course of a research project sponsored by the National
(Italian) Research Council, C.N.R., PAdIS Commillee.
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254 C. POLIZZOTTO

The above external actions, which vary with time I through a time-sequence which is
unknown, belong to a given loading domain n, or, in other words, they can be considered as
one-to-one functions of the point 'T... (p = 1,2, ... ,,), of an '-dimensional domain, as in the
following

1/ =1/('Tv),

~ =~(1'v).

lh =Ui (1'v).
{}jj = {}jj(T.),

ons
l>in V

on~ v E n, (,,= 1,2, ...• ,).

in V.

(2.1a-<l)

A time function Tv =1'v(I), I ~ 0, determines a possible loading history provided 1'v(l) E n for
every I ~o.

Denoting the stress tensor by O'ib the equilibrium equations are

O'iiJ +~ =0, in V,

O'ijnj =1/, on Sit

where nj is the unit external normal of S. while the compatibility equations are

(2.2a)

(2.2b)

Eij = eij +Pij + ~jb in V, (2.3a)

1 in V, (2.3b)Eij =2(Ui,j +Uj,i),

Uj=Uj, on~, (2.3c)

where Eij is the (total) strain tensor, eij its elastic part and Pij its plastic part.
The elastic behaviour of the material is described by Hooke's law, i.e.

eli = AijhkO'~, in V,

where A~ is the usual elastic coefficient tensor, as wen as by the elastic domain

I.. (0'1i) sO, Va E (l,2, ... ,m), in V,

where the convex yield functions

I.. =1..(0'/1), (a = 1,2, ... , m), in V,

(2.4)

(2.5)

(2.6)

are independent of plastic strain and play the role of plastic potentials. Therefore, the plastic
strain rate tensor is given by the usual flow-rule

. -~i . tr
pij - iJO'Ii"a, 10 t',

along with the following side equations

I.. sO, i .. c:O, Va E (1,2, ... , m), in V,

laA.. =0, faA.. =0, in V.

The plastic strain intensities A.. = A..(x, I), given by

A.. =f i .. dl, (a =1,2, ... ,m),

(2.7)

(2.81, b)

(2.91, b)

(2.10)
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as well as the plastic work density W = W(x, I), given by

W = i' uiRi/ dt, (2.11)

are nonnegative functions of t for any x E V. If they remain finite everywhere in V while t
increases, the structure shakes down to a purely elastic state and, as we say, it adapts to the
loads. Shakedown (or adaptation) criteria enable us to recognize if the structure is able to shake
down (or to adapt). However we know that such information is insufficient: the structure, in
fact, may fail because the parameters (2.10) and (2.11), though finite, are excessive with respect
to given safety criteria. The loading history being unknown and a direct evaluation of the above
parameters being thus impossible, we are faced with the problem of finding a priori bound on
their post-shakedown values. Bounds on plastic strain intensities Aa have already been
given[6-11], while bounds on plastic work density W have not been formulated so far. We will
give a bound on W in the following paragraphs.

3. AN ASSOCIATED BOUNDARY VALUE PROBLEM

Let us consider a fictitious elastic-perfectly plastic solid which is identical to that of Section
2, except that its yield functions, instead of (2.6), are

ia(Uij) iii! fa(gUij), (a =1,2, ... ,m), in V,

where the coefficient g is an arbitrary scalar function (perturbation function) such that

g =g(x) ~ 1, Vx E V.

(3.1)

(3.2)

Moreover, this solid is in an arbitrary state of "initial" plastic strains P'j with associated
self-stresses U'j, both independent of t.

The elastic response to the given external actions satisfies the following equations

ifijJ+ F; =0,
ifijnj = 7;,

iij =eij +{tlj +P'j,

• 1(_ _)
Eij =- u'J+u"2 t I."
Us =Ut,

in V,) ( 'l'b' )
5

equll num
on It

in V,)
(compatibility)

in V,

on 52,

in V. (Hooke's law)

(3.3a, b)

(3.4a-c)

(3.5)

The solution to this set of equations is statically admissible if it does not violate the yield
condition, Le.

or. in view of eqn (3.1).

ia(if1j) sO. Va E (l.2.... ,m), in V,

fa(gU,j) sO, Va E (l,2, ... ,m), in V,

(3.6)

(3.7)

where the stresses ifq can be decomposed into the elastic stresses uf (elastic solution to the
original problem) and the self-stresses U'j. We have in fact

iflj =uU +U'it

iq =Eff +E'it
iii =UI

E +ut

(3.Sa)

(3.Sb)

(3.Se)
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with obvious meanings of the symbols.
Suppose a statically admissible solution exists. Then, in virtue of Drucker's postulate[l], we

have

(3.9)

or, equivalently,

(3.10)

which can be written in the form

provided that G is a constant satisfying the inequality

G~g(x), 'Ix E V.

From eqns (2.3a) and (3.4a) and from Hooke's law we deduce the equality

in view of which inequality (3.11) becomes, after an integration over the volume V,

Iv (g -I)O'jPiI dV s G [Iv (O'jj - cTjj)(Ejj - iii) dV

-Iv AiI/tk(O'ij - cTjj)(Uhk - 6-/tk) dV]'
Since the first integral in the right-hand member is zero, we finally have

where B(t) is the nonnegative functional

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

An integration over the time interval (0, I.), remembering the definition (2.11) and cancelling the
subtractive nonnegative term B(I,), furnishes

Iv (g -I)W(x, I,) dV s GB(O) (3.17)

where, in consideration that O'jj(x,O) =O'ff(x, 0) =0 everywhere in V, B(O) proves to be the
functional

(3.18)

Inequality (3.17) is a bound on plastic dissipation energy. This bound, if we take g(x) =
const. = G, transforms into the bound on the overall plastic work given in[l).

4. A MINIMUM PRINCIPLE

In order to make the bound (3.17) the most stringent, we may search for the best choice of
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the self-stresses 0'1j subject to the condition that the clastic solution Uli =uN +U1i satisfies
eqns (3.7). For the sake of a greater generality, we set

g='Y+1, in V, (4.1)

and let the net perturbation function 'Y = 'Y(x) be defined within a positive multiplier w, i.e.

'Y=W'Y. 'Y='Y(x)~O. w>O. (4.2a-c)

Here j(x) is supposed to be arbitrarily prescribed in V, while w is unknown. With these
transformations, inequality (117) can thus be written

r jW(x, 11) dV s G B(O).Jv w
(4.3)

Let us now consider the following minimization problem:

min 4> =G r! Ai./ItkPiiPIIk dV.wJ v 2
(4.4a)

subject to w >0 and

PiM =0, in V.

PiJIIj =0. onSI>

9'11 (SI/) sO, in V+ll,

g-GsO, in V,

(4.4b)

(4.4c)

(4.4d)

(4.4e)

where the following substitutions are to be operated:

g =wj(x) +I, 9'11 = f,,(gSI/), in V. (4.5a, b)

'ii =uC(x, 'Tv) +Pi/(x), in V +ll. (4.5c)

The problem (4.4a-e) is a convex problem of calculus of variations with equality and inequality
constraints. It can be treated following a classical path (see Appendix). The optimality
conditions prove to be the following

Pi/j =0, in V,

{J;jnj =0, on Sit

(4.6a)

(4.6b)

Sii = uU +Pi/,

(4.10)

(4.9a-b)

(4.&-d)

(4.7a)

(4.7b)

(4.7a, b)

iJ )in V+ll
III ~ 0. tp..lll =0. d1j =~ J...

iJSij

qlJ= Ldiidll, D= JnSj~iJdll, in V

f~A~i/PItJr. dV= wG Jv.yg-1DdV,

tpll sO.

G=maxg(x).
.rev

(4.11)

where g is given by eqns (4.1) and (4.2a).
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The set of eqns (4.6a, b}-{4.1l) may be interpreted as the holonomic description of the
original shakedown problem suitably perturbed. This perturbation consists in a homothetic
shrinkage in the ratio Ilg of the yield surfaces. Since the stresses Pli are the elastic response to
the imposed strains qib we find that the best choice for U'i and thus for P'i is

(4.12a, b)

The bound optimization can be performed in two different but equivalent ways: one is
solving the holonomic boundary value problem (4.6a,b}-{4.1l), the other is solving the mini
mization problem (4.4a~) with the side equations (4.5a-c). The latter constitutes in fact a
minimum principle which characterizes the holonomic solution and hence the optimal bound.

In view of the optimality condition (4.10) and the eqn (4.12a), the bound (4.3) can be given a
different form, Le.

(4.13)

Let us now make the following choice for j:

j =I, within a given volume element a v,
j=O, in v-av,

so that g =1+cu in av and g =1 in V - av. Since G =1+cu in accordance with eqn (4.11),
inequality (4.13) takes the significant format

W(x, t.) s (l +cu )D(x), in V. (4.14)

Equation (4.14) is valid for any subsequent time t l >0 and for any point xE V which the
plastic work density is referred to. The quantity D represents the local dissipation energy
associated with the holonomic solution mentioned earlier, which is to be computed in the same
reference point X.

Inequality (4.14) is the desired bound on plastic work density lv, at any point of the body.
For every such point this bound requires the solution of an analysis problem of finite plasticity.
while a bound on the overall plastic work like that given infO requires only an elastic solution.
The more information one can get through the application of inequality (4.14) is thus to be paid
for with a greater computational effort.

S. EXAMPLE

As just an example, we consider the clamped beam of length 2L (Fig. Ia), whose
elastic-perfectly plastic behaviour is characterized by the yield moments

My- =My, M/ =fJM,. (fJ> 1). (5.1a, b)

A point load is applied on the middle section and its intensity F varies quasi-statically as

F=Fo1', l' E TI, TI={1': OS1'ss}

where Fo is the elastic limit load, Le.

Fo=4M,IL

(5.2)

(S.3)

In view of the symmetry, the self-stresses which arise in the beam can be described in te~ms

of two equal and opposite couples, say X, applied at the ends of the simply supported beam
(Fig. Ib). For s s 1the system is in the elastic domain, while for 1< s < Sc it is out of the elastic
domain but able to adapt to the loading at the price of plastic deformations. We want to find a
bound on the plastic work which is dissipated at one of the clamped end sections.
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!F'FoT'IOST~Sl

(0) If-:A---S cl

lel t--~:--------:"'---l ldll--+.-----+---l

Fia. I. Clamped beam loaded on the middle section: (a) gcomebical and loadilll sketch; (b) deformation
pattern; (c) perturbed bendilll moments for I S I s(fJ +2)/3; (d) perturbed bendilll moments for ({J +2)/3 S

I S (fJ +1)/2.

5.1 Real plastic work
The real plastic work \¥, which is done locally at the extreme point A, is expressed by the

product M,lpl, p being the plastic rotation at A. Since p =-FoL2(S -l)/4EI, it follows:

4W/FoL =a(s -1), (1 s s s sc) (5.4)

where we have set

(5.5)

and eqn (5.3) has been accounted for. The value Sc is the plastic collapse load which proves to
be

Sc =(fj +1)/2. (5.6)

s. BOUND ON PLASTIC WORK

For the evaluation of the bound we wJ1l apply the optimality conditions of Section 4. We
consider the total bending moment ME + X. which is amplified in the ratio 1/(1 + tI') in the
vicinities of the end sections A and C. The yield conditions are

at Section A:

at Section B:

-(x-iFoLs)(1 +tI')- M, sO,

(x+i FoLs) - fjM, sO,

(5.7a)

(5.Th)

which can also be written in the following dimensionless form

at Section A: (s - t)(l + tI') -1 :::os; 0,

at Section B: (s +t) - fj sO,

(5.8a)

(5.8b)

where we have introduced the self-stress parameter

l=4X1FoL (5.9)
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The complementary strain energy Boassociated with the self-stresses is

while the plastic rotation q at the end section (Fig. lb) is

no yielding at B: q = - XLIEI = - a{,

yielding at B: q = -(a{+~qo),

(5.10)

(5.1la)

(5.llb)

qo being the relative rotation at B. In accordance with eqn (4.10), ii being equal to one in the
vicinities of the end sections and equal to zero in all the remaining part of the beam, we write
the equality

where we have set

41)FoL =(! - s)q, G =1+ lU.

(5.12)

(5.13a, b)

Two dift'erent cases are possible:
(i) No yielding occurs at tilt middle section (Fig. Ib with qo = 0 and Fig. Ie). Solving eqn

(5.Sa) considered as an equality, as well as eqn (5.12) with q given by eqn (5.11a), we obtain

! =2(s -1), lU =(s -1)/(2- s)

q =-2a(s -I), 4BoIFoL =4a(s _1)2

and the bounding quantity proves to be

1G4Bo---=2a(s -1).
2 lU FoL

(5. 14a, b)

(5.14c, d)

(5.15)

This is valid for 1:s; s :s; Sit s\ being the load for which yielding first occurs in the middle
section, i.e.

s. =({3 +2)/3. (5.16)

(ii) Yielding occurs at the middle section (Fig. Ib with qo F 0 and Fig. Id). Solving eqns
(5.Sa, b), both considered as equalities, as well as eqn (5.12) with q given by eqn (5.11b), we
deduce

! =(3 - S, lU =2(sc - s)/(2s - P),

1
q ="4 a({3 - S)2/(sc - s), 4Bo/FoL =a({3 - sf,

while the bounding quantity is now:

1G 4Bo 1---=-a({3-sf/(s -s)
2lUFoL 4 c'

(5.17a, b)

(5.I7c, d)

(5.18)

In Fig. 2 the real plastic work (5.4) and the bounding quantity (5.15) or (5.18) are plotted as
functions of S for dift'erent values of P(f3 =1.5; 2.0 and 2.5). It is shown that within the interval
(1, SI) the bounding quantity is twice the real plastic work, while within the interval (Sit sc) the
dift'erence still increases with s and diverges for s -+ SI:'
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6 3 2

Fig. 2. Clamped beam loaded on the middle section: Comparison between the real plastic work W (dashed
lines) and the upper bound D(solid lines) for different values of II = My-1M:.

6. CONCLUSION

Considering an elastic-perfectly plastic solid subjected to variable external actions which
belong to a given domain but whose time history is unknown, we have formulated a bound on
the dissipation energy which is produced locally at a given point of the body during the
shakedown process. The method used is a perturbation method we have already applied in
previous works [9-1 1]. Such method enables us to find optimal bounds by solving an analysis
problem of finite plasticity or, equivalently, a convex minimization problem. This analysis
problem may be interpreted as the holonomic version of the original shakedown problem
suitably perturbed, and the above minimization problem thus constitutes an associated mini
mum principle. The holonomic solution causes the bounds to be expressed in a local form
instead of an integral form.

The question to be answered is how good bounds the present method furnishes. The
numerical example of Section 5, presented only for the sake of an illustration, does not give
such an answer and further numerical applications are needed. Extensions and developments of
the present method (for instance considering workhardening behaviour and/or dynamic loads)
will be considered in future research work.
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APPENDIX

In this appendix the optimality conditions (4.68. bH4.1l) are deduced. First of all let the inequalities (4.4<1. e) be
transformed into equalities introducing appropriate slack variables. say z.. in V+nand z in V. i.e.

(A.I)
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(A.2)

(AJ)

(A.4)

Denotill& by w'. vi and I~. (a'" \, 2•.... m), lagrangian variables which are defined in appropriate domains. we
consider the lagrangian functional

4>* .. Q ( -2
1

AijWlliPhl dV+ r PijjV; dV-1 pijlljvi dS
w Jv Jv s,

+In Iv (.p.(Sij) +z.2J/~dV<ill +Iv (g - G+Z2)w' dV.

where g is given by eqns (4.1) and (4.21) and IP•• Su are given by eqns (4.5a-c). The first variation of $*. after some
rearranaements and using the equality

Iv 8{JijJvi dV '" Is V/6p,;lIj dS- L~ (vij +Vj.l)Sp;; dV.

reads as in the followill&:

w=[ -§IAA~dV+Li 'YSijtl~dndV]cSw

+fvp;;~VjdV+fv[~~ +Lg-!8.; 1~<ill-Vi.l]~dV

-1 PijIIPlljds+16Nt1VjdS+ ( r [f.(Qq)+z,,2]81~dVdn
51 52 lnlv

+[~L!A~dV- Iv W'dV]cSG+ L(Wl-G+ 1+Z2)Sw' dV

+2III Iv z"1;Sz,, dV dll +2 Iv zw'cSz dV. (A"s)

where for tbe sake of convenience we have set

f4 .. gS;;. in V+ll. (A.6)

In order that 6cl>* be %ero for any consistent variation of all the variables. the following field equations are to be
satisfied:

(A.7a.b)

, 1(, + ') . V1'/;; .. 2Vij VJ,j. In ; vj=O. on 5.1; (A.Sa.b)

"ij=~~+ fngt/;dll. in V.

/.(OIj)+z.,2=O. zJ;=O. in V+ll;

f jw' dV+f ;; ( SU!s-Q· t;dlldV ..gf -2
1

AiJ/tkPiiPl,l dV;
v v In U ij W V

IIIj-G+I+z1 ",O. zw'''O. in V;

W fW'dV" f)A~dV.

Let us now make tbe transformation

Then. in view of the equality

!.f6. !Is.. Y (I 2 ). V"=g,,I'\' aE • ..... m. In •"Su "'<Ii

aod by elimiDation of the slack variables. eqns (A.7a. b) to (A.12) become respectively

1jij"~(Vi.i+IIj.i), in V; IIj=O. 005.1;

1'/ij=Ai.i/YPltl+q/jo in V;

,.(Sij) sO. 1.~0. ,.1.=0. in v+n;

(A.Be)

(A.9a.b)

(A.IO)

(All)

(A.l2)

(A.l3a-d)

(A.l4)

(A.lSa.b)

(A.l6a.b)

(A.l6c)

(A.17A-c)
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( ~ A'/~tPiiP~t dV = w ( yg-I ( S,,-di; dn dV + w ( jw dV (A.l8))\'" Jv JII )".
g - G sO. II' ~ O. (g - G)w =O. in V. (A.l9a-<:)

Iv ~ AiilotPI;/JII{dV =G Iv II' dV. (A.20)

where we have set

q,j =Ld,j dn. in V.

The integration of the equality (A.l9c) over the volume V gives

!vgWdV=G Iv wdV.

Then. combining the latter with eqns (A.18) and (A.20) yields

Iv ~ AjjMPiiPhA dV = Gw Iv yg-I In SiJ'lij dn dv.

(A.2Ia)

(A.2Ib)

(A.22)

(A.23)

Finally we observe that:
(a) If II' = w(x) is everywhere zero. the integral on the left side of eqn (A.20) vanishes, which implies that Ai = 0

everywhere in V. This situation occurs when the elastic solution is everywhere inside the perturbed yield surface. i.e.
1P0(uff)<0 (and hence 10(uff) <0). In other words. the body remains always elastic.

(b) If w;o! 0 at a point. there it follows that G = g in accordance with eqn (A.l9c). Therefore, the constant G proves to
be

G= maxg(x),
.e v

(A.24)

and II' may be different from zero only where g takes its maximum value.
(c) The Langrangian variable II' can be eliminated from the set of optimality conditions by simply substituting eqn (A.18)

with eqn (A.23) and eqns (A.I9a-<:) and (A.20) with eqn (A.24). So we obtain the optimality conditions of Section 4.


